Agenda

• Path to Long-Term Issues
 – Enablers, Confusors, Accelerators

• AI Research Directions for Safety & Beneficence
 – Stack Continuum Perspective
 – Anchor Continuum Perspective
Path to Long-Term Issues

• Enablers
 – Raw capabilities to model, decide, and act

• Confusors
 – Why people and systems misunderstand each other

• Accelerators
 – Dynamics speeding unpredictable outcomes
Enablers

• Modeling capacity
 – Explicit modeling
 • E.g. knowledgebases, explicit data analyses
 – Implicit via representation capacity
 • E.g. Subsymbolic representation of its environment

• Action space range
 – Explicit decision range or ‘actuators’ of an agent
 • E.g. phone dialogue, flying in the air, using online forms
 – Implicit ability to cause actions
 • E.g. influencing, instructing, or convincing people to act
Confusors

• Poorly defined scoring function
 – Or cost function, reward function, etc.
 – Classical genie or sorcerer's apprentice problem
 – Increasingly difficult to specify
 • As approaches open world model
 • In underconstrained cyberphysical contexts
 – Continued existence and getting resources to achieve goals would be implied by default

• Control leakage
 – Control hints leak into model of environment
 • Or are included by design
 • E.g. on, off, reset, choosing inputs, recharging, nonobvious reward precursors
 • Creep into explicit or implicit plans or low-cost patterns
 • Open-world curiosity leads to self-discovery
Value Misalignment

- If some elements of human values are omitted, an optimal policy often sets those elements to extreme values.
Control Degradation

Image courtesy of Stuart Armstrong
Accelerators

• Security
 – Integrity of beliefs can be compromised

• Complexity
 – Beyond human understanding
 – Increasingly dependent on these systems

• Recursive self improvement
 – Systems will be able to do science and engineering
 – Systems will be able to create better systems than themselves
Research Directions for Safety & Beneficence

- **Verification** (Of ML Algorithms, Distributions, Agent Modifications)
- **Validation** (From intent to specification)
 - Robust Induction (Flexible, Context Aware)
 - Interpretability (Causal Accounting, Concept Geometry)
 - Value Alignment (Concept Geometry, Learned and Induced Ethics)
- **Security** (Very Adversarial Learning, Anomalous Behavior Detection)
- **Control** (Corrigibility, Game Theory, Verifiability)
Verification

• Provably correct implementation given a specification
 – Probabilistic calibration and distributional deduction
 – Verification of reflective reasoning
 – Extension upward in mathematical and algorithmic modules
 – Dynamic learning optimization
 – Interactive theorem proving
Validation 1

• Robust induction
 – Distribution change awareness
 – Anomaly explanation
 – Adversarial risk minimization

• Concept geometry
 – Structuring concepts closely to how humans do

• Machine learning of ethics
 – Explicit learning of implicit values from texts, videos
 – Implicit learning of explicit rules in multiagent environs
Validation 2

• Mechanism design
 – Exploring beneficial protocols
 – Verified game theoretic behaviors

• Metareasoning

• Inverse reinforcement learning of values

• Interpretability and Transparency
Security

• Containment, a.k.a. “boxing”
 – Trusted Computing aids this
 – Standards around airgapped security

• Adversarial vs. very adversarial training
 – Levels of priority and privilege to different biases
 – Different training rates for different biases

• IT Security
 – E.g. media formats that cannot hold malware
 – Bulletproof mechanisms in general help
Control

• Privileging control information
 – Helps in the short-medium term

• Computational empathy requires computational sympathy
 – To help avert excess reverse control

• Corrigibility
 – Structurally ensuring compliance with corrective actions that are otherwise against its utility/cost/reward functions
Timeframes

Short term
- Self-driving cars
- Medical decision support
- Search, ads
- Recommender systems
- Machine translation
- Image & video interpretation
- ...

Long term
- Leisure society?
- Advanced medical care
- Economic growth
- AI assistants
- Human-machine interface
- Humanoid robot companions
- ...

Deep future
- Crazy SciFi stuff
- APM
- von Neumann probes
- Cure for aging
- Paradise engineering
- Ubiquitous micro surveillance
- Value fixation
- Uploading
- Ancestor simulations

Now
Timeframe- Anchored Differential Technological Development

Now

Safety research
- Speed of progress
- Openness
- Elite involvement
- Collaborations
- Capacity building
 ...

Control technology
- Hardware overhang
- Competitive situation
- Insight and mobilization
- Cognitive enhancement
- Norms, commitments
- Other xrisks
 ...

Singleton / multipolar?
- Human values / random values?
- Stable equilibria?
- Decision theory? Prior?
- Alien superintelligences?
An AI Research Conceptual Continuum
Along Anchor Time

<table>
<thead>
<tr>
<th>Anchor Time</th>
<th>Reducing Obliviousness</th>
<th>Ethics Mechanisms</th>
<th>Mutual Understanding</th>
<th>Establishing Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implicit Human Concepts</td>
<td>Controlling Value Alignment</td>
<td>Characterizing Behavior</td>
<td>Developmental Guarantees</td>
</tr>
<tr>
<td></td>
<td>Dealing with Online Distribution Shift</td>
<td>Ethics Implicit in Broader Learning</td>
<td>Quantifying Value Alignment</td>
<td>Projecting Behavioral Bounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Causal Accounting</td>
<td>Verification of ML</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Safer Self-Modification</td>
</tr>
</tbody>
</table>

Yet progress can be made in each thread now...
Dealing with Online Distribution Shift

• Thomas Dietterich, Oregon State University: Robust and Transparent Artificial Intelligence Via Anomaly Detection and Explanation
 – (caution in open worlds ... via ... conformal predictions, apprentice learning)

• Brian Ziebart, University of Illinois at Chicago: Towards Safer Inductive Learning
 – (deeper discernment ... via ... adversarial testing, adversarial risk minimization)

• Percy Liang, Stanford University: Predictable AI via Failure Detection and Robustness
 – (context-change tolerant learning ... via ... structural moments, tensor factorization, online distribution drift analysis)

• + Feature identification, Pervasive confidence quantification
Concept Geometry

• Vincent Conitzer, Duke University : How to Build Ethics into Robust Artificial Intelligence
 – (systematized ethics ... via ... ML on ethics, computational social choice, game theory)

• Seth Herd, University of Colorado : Stability of Neuromorphic Motivational Systems
 – (BICA control and understanding ... via ... neural architectures, computational cognitive science, introspective profiling)

• Fuxin Li, Georgia Institute of Technology : Understanding when a deep network is going to be wrong
 – (deep net introspection and understanding ... via ... adversarial deep learning)

• + Realistic world-model, Possibility enumeration, Ontology identification, World-embedded Solomonoff induction
Ethics Implicit in Broader Learning

• Francesca Rossi, University of Padova: Safety Constraints and Ethical Principles in Collective Decision Making Systems
 – (ethical dynamics ... via ... constraint reasoning, preference reasoning, logic-based inductive learning)

• + Ambiguity identification, Non-self-centered ontology refactoring
Alignment Mechanisms

• David Parkes, Harvard University: Mechanism Design for AI Architectures
 – (structurally induced beneficial outcomes ... via ... distributed mechanism design, game theoretic MDPs, multi-agent reinforcement learner dynamical models)

• Daniel Weld, University of Washington: Computational Ethics for Probabilistic Planning
 – (ethics definition mechanisms and enforcement ... via ... stochastic verification, constrained multiobjective markov decision processes)

• Adrian Weller, University of Cambridge: Investigation of Self-Policing AI Agents
 – (active safety enforcement ... via ... evolutionary game theory, information dynamics, cooperative inverse reinforcement learning)

• Benya Fallenstein, Machine Intelligence Research Institute: Aligning Superintelligence With Human Interests
 – (verifiable corrigibility ... via ... game theory, verifiability)

• + Computational humility, Incentivized low-impact, Logical uncertainty awareness
Quantifying Value Alignment

• Stuart Russell, University of California, Berkeley: Value Alignment and Moral Metareasoning
 – (value learning ... via ... cooperative inverse reinforcement learning, metacognition)

• Paul Christiano, University of California, Berkeley: Counterfactual Human Oversight
 – (sparsely directed agents ... via ... inverse reinforcement learning, active learning)

• Owain Evans, University of Oxford: Inferring Human Values: Learning "Ought", not "Is"
 – (learning desirable implications ... via ... inverse reinforcement learning, preference learning)

• + User modeling, Joint ethical system representations
Causal Accounting

• Manuela Veloso, Carnegie Mellon University: Explanations for Complex AI Systems
 – (human-machine understanding ... via ... constraint reasoning, preference reasoning, reasoning provenance introspection)

• Long Ouyang: Democratizing Programming: Synthesizing Valid Programs with Recursive Bayesian Inference
 – (human-machine understanding ... via ... bayes nets, program synthesis, pragmatic inference)

• + Causal identification, Audit trails, Top factor distillation
Projecting Behavioral Bounds

• Bart Selman, Cornell University: Scaling-up AI Systems: Insights From Computational Complexity
 – (bounded roadmapping ... via ... complexity analysis)

• + Boxing/containment, Decision theory analysis
Verification of ML

• Alex Aiken, Stanford University: Verifying Machine Learning Systems
 – (verification of machine learning ... via ... probabilistic programming, automated proofs)

• Stefano Ermon, Stanford University: Robust probabilistic inference engines for autonomous agents
 – (expanded proof classes ... via ... probabilistic calibration, random projections, distributional deduction)

• Benjamin Rubinstein, The University of Melbourne: Security Evaluation of Machine Learning Systems
 – (deeper discernment ... via ... adversarial learning, dynamic learning optimization)

• Andre Platzer, Carnegie Mellon University: Faster Verification of AI-based Cyber-physical Systems
 – (cross-domain robustness proofs ... via ... differential dynamic logic, hybrid verification)

• + Argumentation-based verification
Safer Self-Modification

- Ramana Kumar, University of Cambridge: Applying Formal Verification to Reflective Reasoning
 - (safer self-modification ... via ... interactive theorem proving, self-reference, verification)

- Bas Steunebrink, IDSIA: Experience-based AI (EXPAI)
 - (safer self-modification ... via ... incremental validation, self-modification, evidence-based program synthesis, intention learning)

• + Abstract reasoning about superior agents