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Computational biology

I Analyzing large amounts of human genetic and clinical data
to generate biological hypotheses.

I Positive impact on society
I Biological findings

I Data-driven medicine

I Precision medicine

I Computer-aided diagnosis
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What about negative impact?
Should I worry about it?
I I am a member of society.

I I am funded by public money.

I If I don’t, who else will? Isn’t it other people’s job?
Social scientitsts, ethicists, lawmakers, etc.
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Data sharing in computational biology

I More data⇒ better algorithms.

I Utilize data maximally.

I Make the most out of public research
funding.

Image source: Hyperbole and a half
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Big, open data is awesome...
... but so is privacy.
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Genetic privacy: Why care about it?

I Information about you.

I Information about your family.

I Genetic discrimination.
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Genetic discrimination
Being treated differently because you have (or are perceived
to have) a genetic mutation that increases your risk of an
inherited disorder.

I Matthewman, W. D. (1984). Genetic testing: Can your genes
screen you out of a job? Howard LJ, 27, 1185.
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Legislation against genetic discrimination
From the Declaration of Bilbao (1993) to Article 21 of the EU
Charter of Fundamental Rights (effective 2009).

I France (March 2002): prohibits any discrimination based on
genetic characteristics.

I USA (April 2008), GINA: restricted to employment and health
insurance.

I Germany (July 2009), Gendiagnostikgesetz.

I CalGINA (2012): housing, mortgage lending, employment,
education and public accommodations.
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Fear of genetic discrimination
And yet

I No genetic discrimination law in e.g. Canada.

I Fear of genetic discrimination is still strong [Green et al.,
2015].

I Wauters, A. and Van Hoyweghen, I. (2016). Global trends on
fears and concerns of genetic discrimination: a systematic
literature review. Journal of Human Genetics.

http://www.wired.com/2016/02/schools-kicked-boy-based-dna/ 8
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How to protect genomic privacy?

Image source: http://www.perspecsys.com/ 9



Anonymization is not enough

Anonymization of records is not enough.

I Your inclusion in the study will affect the results of the study;

I The results of the study will give (with high probability) new
information about you.
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Anonymization is not enough

2006:
I Identification of individuals in a data base using genetic markers
corresponding to their phenotye (e.g. skin/hair/eye color) [Malin].

2008:
I Deanonymization of Netflix data [Narayanan & Shmatikov].

I Assessing whether a given genotype is part of a cohort summed up by
allele frequencies [Homer et al].

⇒ NIH and Wellcome Trust policy update.
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Anonymization is not enough

2009:
I Quantitative guidelines for releasing a limited number of SNPs without
compromising privacy [Sankararaman et al.].

I Also identify the phenotype associated with this genotype [Jacobs et al.].

I Homer et al. extended to only requiring a few hundred SNPs (instead of
full genotype) [Wang et al.].

2012:
I Predict SNPs from gene expression [Schadt et al.].

I Predict surnames from Y-STRs and public genealogical data bases
[Gymrek et al.].
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Are there alternative approaches that
provide appropriate participant privacy
while maximizing scientific impact?

http://www.stockmonkeys.com
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k-anonymity

I k-anonymity: Censor information until it becomes impossible
to distinguish one person from k − 1 others [Sweeney, 2002].

I l-diversity: At least l “well-represented” values for each
sensitive attribute [Machanavajjhala et al., 2007].

I t-closeness: Bound by t the distance between the distribution
of a sensitive attribute within an anonymized group and its
distribution within the whole data [Li et al., 2007].

Not well-suited to high-dimensional settings.
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Differential privacy
Maximize the potential of a database while minimizing the
chances of identification.

I Can we guarantee that the privatized version of what is
released is nearly the same, whether you’re included in the
study or not?

P (M(D) = C)

P (M(D ∪ {x}) = C)
≤ eε

I Noise-injection mechanisms, e.g. Laplace, exponential, or
algorithm-specific.

I Price to pay: accuracy of the algorithms.
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Differential privacy & precision medicine

Differential privacy in personalized warfarin dosing
[Fredrikson et al., 2014]

I Can you predict genotype from black-box model and
marginals, dosage, basic demographics?
genotype: values of SNPs in two genes of interest (CYP2C9 and VKORC1)

I With current differential privacy mechanisms, model inversion
attacks can only be prevented at the price of exposing
patients to increased risk of stroke, bleeding, and mortality.
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Is promising privacy realistic?

I Trust Not Privacy [Erlich et al., 2014]
Transparency, increased control and reciprocity.

I Secure cloud computing
E.g. The Pan-Cancer Analysis of Whole Genomes (PCAWG)

I Restrictions on access to data
A burden for (junior) researchers.
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Privacy is dead

I Inform participants that their privacy cannot be guaranteed,
and seek consent nonetheless.
– The Personal Genome Project

– OpenSNP

– 1000 Genomes German cohort.

I P4 medicine:
Preventive, Predictive, Personalized and Participatory.
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source: http://www.flickr.com/photos/wwworks/
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